
successes without magic

(\d)(?:\u0020|\u0209|\u202F|\u200A){0,1}((m|mm|cm
|km|V|mV|µV|l|ml|°C|Nm|A|mA|bar|s|kV|Hz|kHz|M
Hz|t|kg|g|mg|W|kW|MW|Ah|mAh|N|kN|obr|min|µm
|µS|Pa|MPa|kPa|hPa|mbar|µF|dB)\b)
^\t*'.+?' => '
€(\d+)(,)(\d+)K
(")([a-z0-9])

1. Introduction

2. Regex basics

3. Use cases

4. Search and Replace

5. Wildcard characters in Word

6. Questions

7. Regex reference

1. Introduction

 Regex = regular expressions

 In Word also known as “wildcard characters”

 A regular expression, regex or regexp (sometimes called a rational
expression) is, in theoretical computer science and formal language
theory, a sequence of characters that define a search pattern.1

 It can be used to find similar strings or replace them with other strings

 Widely used in CAT tools2

1 Source: Wikipedia
2 Mostly invisible to the user – in the parser or in the segmentation rules

https://en.wikipedia.org/wiki/Regular_expression

2. Regex basics

 Different Regex “Languages” (called “flavours”)

◦ We're only dealing with .NET here

 Knowledge sources and tools

◦ Website http://www.regular-expressions.info/

◦ Software RegexBuddy

◦ Software Notepad++

◦ Blog by Paul Filkin (SDL)

http://www.regular-expressions.info/
https://www.regexbuddy.com/
https://notepad-plus-plus.org/
https://multifarious.filkin.com/

 Each character represents itself

◦ a matches “a” in basics

◦ Ab matches “Ab” in Abba

◦ etc.

 Some characters have special functions (and are called
“metacharacters”)

◦ Dot (.) matches any character

◦ +, * are so-called “quantifiers”

◦ Brackets () [] {} also have special functions

 To find a word, we can simply write the word

◦ Test matches “test”, but also “test function” or (under certain conditions) “testing”

◦ Tr.ck matches “Trick” and “Track”

◦ 2.1 matches “201” or „221”, but also “2,1” or “2.1”

 Regex may or may not be case-sensitive

◦ co matches “cooperation” and “chocolate” when “case insensitive”

◦ AB matches “ABBA” but not “AbbA”, if “case sensitive”

 The following special characters are frequently used

◦ \d represents any digit

◦ \w stands for a so called “word character”

 A word character is any character from which words or alphanumeric expressions are formed –
thus excluding dots, commas, spaces, etc.

◦ \w matches “201”, “2.1”, “AbbA” and so on

◦ \d matches “201”, “2,1”, “A4” etc.

 The upper or lower case of metacharacters is of enormous importance

◦ \d matches a digit

◦ \D matches everything EXCEPT digits

◦ \w matches word characters

◦ \W matches everything EXCEPT word characters

◦ \s matches so-called “whitespaces” – usually these are common spaces

◦ \S matches everything EXCEPT spaces

 The so-called “caret” sign ^ is used for negation

 Must be used together with square brackets

 By negation characters can be excluded from the search

◦ [^b] matches everything except “b” – for example “AbbA” or “abstraction“

 Square brackets [] can be used to enter character ranges

◦ [a-c] matches all letters between a and c – “check out”, “play”

◦ [1-3] matches digits between 1 and 3 – “201” or “728,1234”

◦ [3-4a-i] matches digits 3 or 4 OR letters between a and i OR a combination of these
characters – “728,1234”, “testing”, “playing“ or “A4”

 The order of the matched characters does NOT reflect the order of the entered strings

◦ a[d-s] matches “ballroom” or “Market“

 In addition to the above-mentioned function (character ranges), the
rectangular brackets are used to define character groups

◦ [arst] matches every letter from this group

 “AbbA”, “Test function”, “Australia“, “Track”

◦ The order of the matched characters is arbitrary

 [tras] or [rast] will match the same examples

 Curly braces {} are used to specify the number of character occurrences

◦ \d{3} matches “201” or “09.07.2016”

◦ \w{3} matches both “AbbA” and “realization“ (and other contiguous groups of
three letters or digits)

◦ \d{2}.\d{4} matches “09.07.2016” or “728,1234”

 To find a certain number of a character or of a defined string between a
start and an end value, curly braces {} are also used together with the
comma (,)

◦ {1,5} matches the given character between 1 and 5 times

 b{1,5} matches “AbbA”, “ABBA” and “absence”

◦ {2,} matches 2 and more (at least 2) occurrences

 b{2,} therefore only matches “AbbA”, “ABBA”, but not “absence”

◦ {0,2} matches up to 2 occurrences

 \d{0,2} always matches groups of up to two digits, “201” or “201” and of course any single digit
in these strings

 Like square brackets, round brackets () are used to define character
groups

 However, the order of the characters entered is important here

◦ Looking at “Spitfire” as example and using “tips” or “spit”

 (tips) won’t find ANYTHING

 (spit) will however only match “Spitfire”

 A character group enclosed in round brackets can also be used for
“backward references”

 If a metacharacter such as dot (.) or parenthesis (e.g. [) is searched, the
inverted slash (\, called “backslash”) must be used to cancel its meta
functionality

◦ To match the dot (.), \. must be entered

 This matches “20.25” or “09.07.2016”

◦ To match either (or [, you must “escape” them and insert these in a grouping
parenthesis

 [\(\]] matches (] in “metacharacters are, for example, ., (), [], {}”

 Each character represents itself

 Character classes

◦ \d digit

◦ \w word character

◦ \s space

◦ \W non-word characters

 Parenthesis

◦ () group with backward reference

◦ [] character group

◦ {} determining the number of
occurrences

 Quantifiers

◦ + one or more occurrences

◦ * zero or more occurrences

 Negation

◦ ^ negation (must be applied in [])

 Searching for metacharacters

◦ \ a metacharacter must be “escaped”,
this means placing a backslash in front
of a metacharacter

3. Use cases

 Our task is to find dates in the format dd.mm.yyyy in the example text

◦ Date consists only of digits and dots

 The required expressions are \d and \.

 The matched expression shall consist of two digits, followed by a period, followed by two digits,
followed by a period and four digits

 We now try to design the expression together in RegexBuddy

 Solution

◦ \d{2}\.\d{2}\.\d{4}

 or

◦ \d\d\.\d\d\.\d\d\d\d

 but

◦ The date 6.3.1938 was NOT found

 Modified solution

◦ \d{1.2}\.\d{1.2}\.\d{2.4}

 Matches 6.3.1938, but also 14.09.18

 Now the task is to find numbers in the same text

◦ Numbers also consist of numbers and dots (for larger numbers) and, if necessary, a
comma and other digits, but they have a different structure as date

◦ Expressions to be used

 \d, \b, \. and comma for itself

 Solution

◦ \d+\.\d{3}\b

 \b means “word boundary” – thus excludes another word character behind it

 Word boundary is an important part of Regex

 Regular expressions with indefinite quantifiers (+, *) are greedy

◦ This will ensure matching as much characters as possible

 \w* matches everything that consists of word characters – for example “AbbA” or “201”

 In “20.01” both digit blocks will be matched

◦ That makes the search imprecise

 To edit documents in CAT, the tags must be “masked”

◦ For this purpose regular expressions are used

 Our task now is to find tags in our text

◦ Expressions to be used

 < and > for start and end of the tag

 . for any character

 Quantifiers

 Grouping characters (brackets)

 others…

 First attempt

◦ < start of the tag

◦ . any character

◦ + at least one or more occurrences

 or

◦ * 0 or more occurrences

◦ > end of the tag

 Solution

◦ <.+>

 Result

◦ Almost all the text is highlighted because the expression is “greedy”

◦ This means searching beyond the “<” sign, until after the “>” sign no further
occurrence of “>” can be detected

 Unsuitable expression, because too much would have been masked

 To make the expression “lazy”, the search must stop at the FIRST
occurrence of “>”

 For this purpose, “?” is used

 Solution

◦ <.+?>

◦ To be read as:

 Search for any character following the “<” sign, until the first occurrence of the “>” sign is found

 In the tag the text of the
attribute “alt” shall remain translatable

◦ Expressions to be used

 < and > for start and end of the tag

 . any character

 Quantifiers

 Grouping characters (brackets)

 others…

 Solution

◦ <img.+?alt=" is to be used for the first part of the tag

◦ "> represents the end of the tag

4. Search and Replace

 When searching and replacing, it is often important to be able to reuse
what has been found

 This is the purpose of the so-called backward references

◦ The expressions to be searched for must be grouped using round brackets ()
(“capturing group”)

◦ When replacing, the nth group can be referenced with \n1 and inserted again

1 In SDL Trados Studio, the dollar sign $ is used for the backward reference in the replacement function instead of the backslash \!

 Our task now is to correct misspelled numbers and measurement units

 Expressions to be used

◦ \d for digit

◦ Space for itself

◦ Measurement units for themselves

◦ Groupings

◦ Backward references

◦ Other characters

 Solution

◦ Find numbers and measurement units without spaces with
(\d)(m|cm|mm|g|kg|°C|V|A)

 The expressions in () form the “capturing groups” and can be backreferenced

◦ Replace with \1/°\2

 \1 inserts the first “capturing group”, \2 the second one etc.

 ° stands for a non-breaking space (called also hard space or protected space)

 This expression can be used to search for misspelled measurement units

◦ Search for:
(\d)(?:\u0020|\u0209|\u202F|\u200A){0,1}((m|mm|cm|km|V|mV|µV|l|ml|°C
|Nm|A|mA|bar|s|kV|Hz|kHz|MHz|t|kg|g|mg|W|kW|MW|Ah|mAh|N|kN|o
br|min|µm|μm|µS|Pa|MPa|kPa|hPa|mbar|µF|dB|gal)\b)

◦ Replace with:
\1°\2

 Explanation

◦ (\d)
 any digit, is the capturing group number 1

◦ (?:\u0020|\u0209|\u202F|\u200A){0,1}
 0 or 1 occurrences of any space character, but not the non-breaking space!

 ?: causes this group to be a non-capturing group (to make the replacement easier)

◦ ((m|mm|cm|km|V|mV|µV|l|ml|°C|Nm|A|mA|bar|s|kV|Hz|kHz|MHz|t|kg|g
|mg|W|kW|MW|Ah|mAh|N|kN|obr|min|µm|μm|µS|Pa|MPa|kPa|hPa|mba
r|µF|dB|gal)\b)
 Measurement units, separated by | (pipe), where the parentheses around the measurement

units are used to search for them exactly as written

 \b represents word end and the outer parenthesis pair forms the 2nd capturing group

 The next task is to prepare special texts (such as specific XLIFF files) for
translation

 To do this, certain text must be copied and pasted elsewhere

◦ The text can contain letters, numbers, dots, commas and other characters!

 In the example document there is only text present between the tags
<english>…</english>

 The translation must however be entered between a new tag pair –
<target>…</target>, where “target” corresponds to the language of the
translation

◦ The tags <english>…</english> with the text in between must be kept!

 The task is now to copy the text between the tags and “duplicate” it
surrounded by appropriate tags for the target language

 To be searched

◦ (<english>)(.+?)(</english>)
 The use of ? causes the text to be found only between the opening and closing tag instead of

between the first opening and the last closing tag, as this expression is “lazy”

 To be replaced

◦ \1\2\3\r\n\t\t<polish>\2</polish>

◦ To be read as
 \1\2\3 copies the <english> tags and the text in between

 \r\n represents a new line, while \t represents a tabulator

 <polish>\2</polish> returns the text (the second “capturing group”) surrounded by the desired
tags

5. Wildcard characters in Word

 Very similar to Regex

 The main differences are the metacharacters

◦ * in Word stands for any number of arbitrary characters and therefore has no
counterpart in Regex

◦ ? represents a single character in Word

◦ Word can also replace formatting

 Searching in Word is more complicated

◦ To find €1,931K, the expression should be like this

 €[0-9],[0-9]{3}K

 Replace for same text €1,931K

◦ Search for: €([0-9]),([0-9]{3})K

◦ Replace with: \1.\2^sTsd. €

 ^s represents a non-breaking space

 Search for formatting

◦ Leave the search field (“Find what:”) empty

◦ Click “More” in the bottom of the “Replace” dialog in the “Search and Replace”
box

◦ Select the desired formatting from “Format” in the bottom left corner

 Find and replace formatting

 Task: only certain text marked in colour (here red) should remain
translatable

◦ Leave the search field empty (“Find what:”), but the cursor shall be placed in it

◦ Chose “Font” from the “Format” and select the font colour of the text to be
replaced (here: “Automatic”)

◦ Leave the replace field (“Replace with:”) also empty, but the cursor shall be now
placed in it

◦ Select “Font” from the format tab again and then mark the option “Hidden”

◦ Replace all occurrences

 Find and replace formatting

 Task: only certain highlighted text (here yellow) should remain
translatable

◦ Leave the search field empty, but the cursor must be placed in it

◦ In the format tab select “Highlight”

◦ Select “Highlight” again, this changes the search to “Not Highlight”

◦ Leave the replace field also empty, but the cursor must be now placed in it

◦ Select “Font” from the “Format” again and then mark the option “Hidden”

◦ Replace all occurrences

6. Your questions

7. Regex reference

 . = any character

 \d = digit

 \D = anything BUT digit

 \w = word character

 \W = anything BUT word character

 \s = so called whitespace and line breaks
and the like

 \S = NO “Whitespace” – corresponds to [^\s]

 \t = tabulator

 \u1234 = Unicode character with the code 1234

 [a-z] = a single character from the range a-z

 [abz] = one (two or all) of the characters a, b, z

 [^a] = any character, but not “a”

 \n = line feed (LF)

 \r = carriage return (CR)

 + = at least one or more occurrences

 * = zero or more occurrences

 ? = the quantifier will be “lazy”

 {n} = exactly n occurrences

 {n,} = at least n occurrences

 {n,m} = at least n and maximum m
occurrences

 {0,n} = no more than n occurrences

 (abc) = the expression in brackets must be found
exactly as typed

 (abc)* = the expression in brackets must be found
exactly as typed 0 or more times

 (abc)+ = the expression in brackets must be found
exactly as typed 1 or more times

 .+?a = search for any character until “a” (the first
character behind “?” has been found
(so called “lazy” search)

 ^ = start of line (entered without brackets)

 $ = end of line or string end

 \ = is used to override the meta functionality

 \\ = matches \

 \b = start or end of word

 \r\n = line break in Windows

 | = separator

 ?: = makes a group to a “non-capturing group”

Many thanks for
your attention!

©2018 Dipl.-Ing. Jerzy Czopik

