
successes without magic

(\d)(?:\u0020|\u0209|\u202F|\u200A){0,1}((m|mm|cm
|km|V|mV|µV|l|ml|°C|Nm|A|mA|bar|s|kV|Hz|kHz|M
Hz|t|kg|g|mg|W|kW|MW|Ah|mAh|N|kN|obr|min|µm
|µS|Pa|MPa|kPa|hPa|mbar|µF|dB)\b)
^\t*'.+?' => '
€(\d+)(,)(\d+)K
(")([a-z0-9])

1. Introduction

2. Regex basics

3. Use cases

4. Search and Replace

5. Wildcard characters in Word

6. Questions

7. Regex reference

1. Introduction

 Regex = regular expressions

 In Word also known as “wildcard characters”

 A regular expression, regex or regexp (sometimes called a rational
expression) is, in theoretical computer science and formal language
theory, a sequence of characters that define a search pattern.1

 It can be used to find similar strings or replace them with other strings

 Widely used in CAT tools2

1 Source: Wikipedia
2 Mostly invisible to the user – in the parser or in the segmentation rules

https://en.wikipedia.org/wiki/Regular_expression

2. Regex basics

 Different Regex “Languages” (called “flavours”)

◦ We're only dealing with .NET here

 Knowledge sources and tools

◦ Website http://www.regular-expressions.info/

◦ Software RegexBuddy

◦ Software Notepad++

◦ Blog by Paul Filkin (SDL)

http://www.regular-expressions.info/
https://www.regexbuddy.com/
https://notepad-plus-plus.org/
https://multifarious.filkin.com/

 Each character represents itself

◦ a matches “a” in basics

◦ Ab matches “Ab” in Abba

◦ etc.

 Some characters have special functions (and are called
“metacharacters”)

◦ Dot (.) matches any character

◦ +, * are so-called “quantifiers”

◦ Brackets () [] {} also have special functions

 To find a word, we can simply write the word

◦ Test matches “test”, but also “test function” or (under certain conditions) “testing”

◦ Tr.ck matches “Trick” and “Track”

◦ 2.1 matches “201” or „221”, but also “2,1” or “2.1”

 Regex may or may not be case-sensitive

◦ co matches “cooperation” and “chocolate” when “case insensitive”

◦ AB matches “ABBA” but not “AbbA”, if “case sensitive”

 The following special characters are frequently used

◦ \d represents any digit

◦ \w stands for a so called “word character”

 A word character is any character from which words or alphanumeric expressions are formed –
thus excluding dots, commas, spaces, etc.

◦ \w matches “201”, “2.1”, “AbbA” and so on

◦ \d matches “201”, “2,1”, “A4” etc.

 The upper or lower case of metacharacters is of enormous importance

◦ \d matches a digit

◦ \D matches everything EXCEPT digits

◦ \w matches word characters

◦ \W matches everything EXCEPT word characters

◦ \s matches so-called “whitespaces” – usually these are common spaces

◦ \S matches everything EXCEPT spaces

 The so-called “caret” sign ^ is used for negation

 Must be used together with square brackets

 By negation characters can be excluded from the search

◦ [^b] matches everything except “b” – for example “AbbA” or “abstraction“

 Square brackets [] can be used to enter character ranges

◦ [a-c] matches all letters between a and c – “check out”, “play”

◦ [1-3] matches digits between 1 and 3 – “201” or “728,1234”

◦ [3-4a-i] matches digits 3 or 4 OR letters between a and i OR a combination of these
characters – “728,1234”, “testing”, “playing“ or “A4”

 The order of the matched characters does NOT reflect the order of the entered strings

◦ a[d-s] matches “ballroom” or “Market“

 In addition to the above-mentioned function (character ranges), the
rectangular brackets are used to define character groups

◦ [arst] matches every letter from this group

 “AbbA”, “Test function”, “Australia“, “Track”

◦ The order of the matched characters is arbitrary

 [tras] or [rast] will match the same examples

 Curly braces {} are used to specify the number of character occurrences

◦ \d{3} matches “201” or “09.07.2016”

◦ \w{3} matches both “AbbA” and “realization“ (and other contiguous groups of
three letters or digits)

◦ \d{2}.\d{4} matches “09.07.2016” or “728,1234”

 To find a certain number of a character or of a defined string between a
start and an end value, curly braces {} are also used together with the
comma (,)

◦ {1,5} matches the given character between 1 and 5 times

 b{1,5} matches “AbbA”, “ABBA” and “absence”

◦ {2,} matches 2 and more (at least 2) occurrences

 b{2,} therefore only matches “AbbA”, “ABBA”, but not “absence”

◦ {0,2} matches up to 2 occurrences

 \d{0,2} always matches groups of up to two digits, “201” or “201” and of course any single digit
in these strings

 Like square brackets, round brackets () are used to define character
groups

 However, the order of the characters entered is important here

◦ Looking at “Spitfire” as example and using “tips” or “spit”

 (tips) won’t find ANYTHING

 (spit) will however only match “Spitfire”

 A character group enclosed in round brackets can also be used for
“backward references”

 If a metacharacter such as dot (.) or parenthesis (e.g. [) is searched, the
inverted slash (\, called “backslash”) must be used to cancel its meta
functionality

◦ To match the dot (.), \. must be entered

 This matches “20.25” or “09.07.2016”

◦ To match either (or [, you must “escape” them and insert these in a grouping
parenthesis

 [\(\]] matches (] in “metacharacters are, for example, ., (), [], {}”

 Each character represents itself

 Character classes

◦ \d digit

◦ \w word character

◦ \s space

◦ \W non-word characters

 Parenthesis

◦ () group with backward reference

◦ [] character group

◦ {} determining the number of
occurrences

 Quantifiers

◦ + one or more occurrences

◦ * zero or more occurrences

 Negation

◦ ^ negation (must be applied in [])

 Searching for metacharacters

◦ \ a metacharacter must be “escaped”,
this means placing a backslash in front
of a metacharacter

3. Use cases

 Our task is to find dates in the format dd.mm.yyyy in the example text

◦ Date consists only of digits and dots

 The required expressions are \d and \.

 The matched expression shall consist of two digits, followed by a period, followed by two digits,
followed by a period and four digits

 We now try to design the expression together in RegexBuddy

 Solution

◦ \d{2}\.\d{2}\.\d{4}

 or

◦ \d\d\.\d\d\.\d\d\d\d

 but

◦ The date 6.3.1938 was NOT found

 Modified solution

◦ \d{1.2}\.\d{1.2}\.\d{2.4}

 Matches 6.3.1938, but also 14.09.18

 Now the task is to find numbers in the same text

◦ Numbers also consist of numbers and dots (for larger numbers) and, if necessary, a
comma and other digits, but they have a different structure as date

◦ Expressions to be used

 \d, \b, \. and comma for itself

 Solution

◦ \d+\.\d{3}\b

 \b means “word boundary” – thus excludes another word character behind it

 Word boundary is an important part of Regex

 Regular expressions with indefinite quantifiers (+, *) are greedy

◦ This will ensure matching as much characters as possible

 \w* matches everything that consists of word characters – for example “AbbA” or “201”

 In “20.01” both digit blocks will be matched

◦ That makes the search imprecise

 To edit documents in CAT, the tags must be “masked”

◦ For this purpose regular expressions are used

 Our task now is to find tags in our text

◦ Expressions to be used

 < and > for start and end of the tag

 . for any character

 Quantifiers

 Grouping characters (brackets)

 others…

 First attempt

◦ < start of the tag

◦ . any character

◦ + at least one or more occurrences

 or

◦ * 0 or more occurrences

◦ > end of the tag

 Solution

◦ <.+>

 Result

◦ Almost all the text is highlighted because the expression is “greedy”

◦ This means searching beyond the “<” sign, until after the “>” sign no further
occurrence of “>” can be detected

 Unsuitable expression, because too much would have been masked

 To make the expression “lazy”, the search must stop at the FIRST
occurrence of “>”

 For this purpose, “?” is used

 Solution

◦ <.+?>

◦ To be read as:

 Search for any character following the “<” sign, until the first occurrence of the “>” sign is found

 In the tag the text of the
attribute “alt” shall remain translatable

◦ Expressions to be used

 < and > for start and end of the tag

 . any character

 Quantifiers

 Grouping characters (brackets)

 others…

 Solution

◦ <img.+?alt=" is to be used for the first part of the tag

◦ "> represents the end of the tag

4. Search and Replace

 When searching and replacing, it is often important to be able to reuse
what has been found

 This is the purpose of the so-called backward references

◦ The expressions to be searched for must be grouped using round brackets ()
(“capturing group”)

◦ When replacing, the nth group can be referenced with \n1 and inserted again

1 In SDL Trados Studio, the dollar sign $ is used for the backward reference in the replacement function instead of the backslash \!

 Our task now is to correct misspelled numbers and measurement units

 Expressions to be used

◦ \d for digit

◦ Space for itself

◦ Measurement units for themselves

◦ Groupings

◦ Backward references

◦ Other characters

 Solution

◦ Find numbers and measurement units without spaces with
(\d)(m|cm|mm|g|kg|°C|V|A)

 The expressions in () form the “capturing groups” and can be backreferenced

◦ Replace with \1/°\2

 \1 inserts the first “capturing group”, \2 the second one etc.

 ° stands for a non-breaking space (called also hard space or protected space)

 This expression can be used to search for misspelled measurement units

◦ Search for:
(\d)(?:\u0020|\u0209|\u202F|\u200A){0,1}((m|mm|cm|km|V|mV|µV|l|ml|°C
|Nm|A|mA|bar|s|kV|Hz|kHz|MHz|t|kg|g|mg|W|kW|MW|Ah|mAh|N|kN|o
br|min|µm|μm|µS|Pa|MPa|kPa|hPa|mbar|µF|dB|gal)\b)

◦ Replace with:
\1°\2

 Explanation

◦ (\d)
 any digit, is the capturing group number 1

◦ (?:\u0020|\u0209|\u202F|\u200A){0,1}
 0 or 1 occurrences of any space character, but not the non-breaking space!

 ?: causes this group to be a non-capturing group (to make the replacement easier)

◦ ((m|mm|cm|km|V|mV|µV|l|ml|°C|Nm|A|mA|bar|s|kV|Hz|kHz|MHz|t|kg|g
|mg|W|kW|MW|Ah|mAh|N|kN|obr|min|µm|μm|µS|Pa|MPa|kPa|hPa|mba
r|µF|dB|gal)\b)
 Measurement units, separated by | (pipe), where the parentheses around the measurement

units are used to search for them exactly as written

 \b represents word end and the outer parenthesis pair forms the 2nd capturing group

 The next task is to prepare special texts (such as specific XLIFF files) for
translation

 To do this, certain text must be copied and pasted elsewhere

◦ The text can contain letters, numbers, dots, commas and other characters!

 In the example document there is only text present between the tags
<english>…</english>

 The translation must however be entered between a new tag pair –
<target>…</target>, where “target” corresponds to the language of the
translation

◦ The tags <english>…</english> with the text in between must be kept!

 The task is now to copy the text between the tags and “duplicate” it
surrounded by appropriate tags for the target language

 To be searched

◦ (<english>)(.+?)(</english>)
 The use of ? causes the text to be found only between the opening and closing tag instead of

between the first opening and the last closing tag, as this expression is “lazy”

 To be replaced

◦ \1\2\3\r\n\t\t<polish>\2</polish>

◦ To be read as
 \1\2\3 copies the <english> tags and the text in between

 \r\n represents a new line, while \t represents a tabulator

 <polish>\2</polish> returns the text (the second “capturing group”) surrounded by the desired
tags

5. Wildcard characters in Word

 Very similar to Regex

 The main differences are the metacharacters

◦ * in Word stands for any number of arbitrary characters and therefore has no
counterpart in Regex

◦ ? represents a single character in Word

◦ Word can also replace formatting

 Searching in Word is more complicated

◦ To find €1,931K, the expression should be like this

 €[0-9],[0-9]{3}K

 Replace for same text €1,931K

◦ Search for: €([0-9]),([0-9]{3})K

◦ Replace with: \1.\2^sTsd. €

 ^s represents a non-breaking space

 Search for formatting

◦ Leave the search field (“Find what:”) empty

◦ Click “More” in the bottom of the “Replace” dialog in the “Search and Replace”
box

◦ Select the desired formatting from “Format” in the bottom left corner

 Find and replace formatting

 Task: only certain text marked in colour (here red) should remain
translatable

◦ Leave the search field empty (“Find what:”), but the cursor shall be placed in it

◦ Chose “Font” from the “Format” and select the font colour of the text to be
replaced (here: “Automatic”)

◦ Leave the replace field (“Replace with:”) also empty, but the cursor shall be now
placed in it

◦ Select “Font” from the format tab again and then mark the option “Hidden”

◦ Replace all occurrences

 Find and replace formatting

 Task: only certain highlighted text (here yellow) should remain
translatable

◦ Leave the search field empty, but the cursor must be placed in it

◦ In the format tab select “Highlight”

◦ Select “Highlight” again, this changes the search to “Not Highlight”

◦ Leave the replace field also empty, but the cursor must be now placed in it

◦ Select “Font” from the “Format” again and then mark the option “Hidden”

◦ Replace all occurrences

6. Your questions

7. Regex reference

 . = any character

 \d = digit

 \D = anything BUT digit

 \w = word character

 \W = anything BUT word character

 \s = so called whitespace and line breaks
and the like

 \S = NO “Whitespace” – corresponds to [^\s]

 \t = tabulator

 \u1234 = Unicode character with the code 1234

 [a-z] = a single character from the range a-z

 [abz] = one (two or all) of the characters a, b, z

 [^a] = any character, but not “a”

 \n = line feed (LF)

 \r = carriage return (CR)

 + = at least one or more occurrences

 * = zero or more occurrences

 ? = the quantifier will be “lazy”

 {n} = exactly n occurrences

 {n,} = at least n occurrences

 {n,m} = at least n and maximum m
occurrences

 {0,n} = no more than n occurrences

 (abc) = the expression in brackets must be found
exactly as typed

 (abc)* = the expression in brackets must be found
exactly as typed 0 or more times

 (abc)+ = the expression in brackets must be found
exactly as typed 1 or more times

 .+?a = search for any character until “a” (the first
character behind “?” has been found
(so called “lazy” search)

 ^ = start of line (entered without brackets)

 $ = end of line or string end

 \ = is used to override the meta functionality

 \\ = matches \

 \b = start or end of word

 \r\n = line break in Windows

 | = separator

 ?: = makes a group to a “non-capturing group”

Many thanks for
your attention!

©2018 Dipl.-Ing. Jerzy Czopik

