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Goals of the Research

● Although being the state of the art, NMT is still prone to errors
● The study aims to:

1) Identify typical lexical, syntactic, and grammatical patterns  
which could lead to errors

2) Develop a program capable of detecting some of them 
before the source language is processed by NMT
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Research Questions

● What are the sources of complexity at lexical and syntactic 
level?

● What types of MWEs are most likely to be mistranslated by 
NMT?

● Is a transformer-based program able to predict where NMT is 
most likely to fail?
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Previous Work (I)

● First attempts to determine the sources of complexity were 
made during the era of rule-based machine translation (RBMT)
– “Translatability indicators“ i.e. text features able to degrade 

the quality of MT output (Underwood and Jongejan, 2001)
– Lists of linguistic features contributing to lexical, syntactic, 

and semantic ambiguity as a set of rules to follow when 
authoring a text for MT (Bernth and Gdaniec, 2001) 
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Previous Work (II)

● Controlled language — “a restricted version of a natural 
language which has been engineered to meet a special 
purpose“ (Kittredge, 2016, p. 13)

● Confidence Index measuring the level of confidence of an MT 
system about the quality of its translation (Bernth, 1999)

● Tool able to determine whether a text in English is suitable for 
MT based on the averaged translatability index which is 
calculated from all translatability indicators and their weights 
(Underwood and Jongejan, 2001)
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Previous Work (III)

● Several studies consider the correlation between MT and post-
editing:
– Correlation between the quality of MT output and the 

product analysis and the effort spent on the  post-editing 
(Daems et al., 2017)

– Correlation between the difficulty of the source text and the 
cognitive and technical effort of post-editors (O’Brien, 2005; 
O’Brien, 2006)
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Frequent sources of complexity for MT

● Pronominal anaphora (Mitkov and Schmidt, 1998) 
● Multi-word expressions (Barreiro et al., 2013)
● Lexical ambiguity i.e. polysemy (Carpuat and Wu, 2007; 

Ngueng et al., 2018)
● Sentence length (Hung, Ngueng and Shimazu, 2012)
● Difference in sentence structuring between the source and the 

target (Birch, Osborne and Koehn, 2008; Popović and Arčan, 
2015)



 9

Methodology: Investigation

Lexical and syntactic complexities:
● English-Russian NMT of 20 texts from the News Commentary 

Parallel Corpus (Tiedemann, 2012) by means of DeepL1 and 
ModernMT2

● Manual analysis of errors
1 https://www.deepl.com/translator

2 https://www.modernmt.com/translate/
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Methodology: Implementation

                         Hybrid approach

Deep Learning:                          Rule-based

BERT (Devlin et al., 2019)         Syntactic patterns

One of the MWE patterns



 11

Methodology: Evaluation

● 2 X F-1 Score will be used
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Limitations

● NMT is in the process of constant development and even some 
of the preliminary results might be already obsolete

● Numerous textual features that are difficult for NMT & 
impossibility to have all of them in the final program

● Limitations related to one language pair, domain and corpus 
size
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Preliminary results (I)

● 15 % of the texts analysed
● The author does not attempt to generalise these results to any 

extent and underlines that they apply only within the limits of 
the size and domain of the texts analysed
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Preliminary results (II): sources of complexity
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Preliminary results (III): lexical sources of 
complexity

ModernMT DeepL
00

55

1010

1515

2020

2525

3030

3535

4040

4545

Polysemy 
MWE
Collocations
Frequent word
Term
Other



 16

Preliminary results (IV): syntactic sources of 
complexity
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